KU LEUVEN

Education project in lonizing Radiation

STUUR - Nuclear Physics

G. Janssens, B. Boeykens, M. De Cock,

KU Leuven, Departments of Physics & Astronomy

- 1. Nuclear Physics in secondary school
- 2. STUUR-project at KU Leuven
- 3. Actual organization
- 4. Special attention to safety
- 5. The experiments
- 6. Results
- 7. Conclusion

1. Nuclear Physics in secondary school

- Compulsory in all curricula
- Strict regulations for radioactive sources
 - only theoretical descriptions and calculations are possible
- Students have no idea of the complexity of ionizing radiation :
 - stochastic behavior of radiation
 - different types and energies in one source
 - the actual realization of protection

- 1. Nuclear Physics in secondary school
- 2. STUUR-project at KU Leuven
- 3. Actual organization
- 4. Special attention to safety
- 5. The experiments
- 6. Results
- 7. Conclusion

2. STUUR-project at KU Leuven

- Student experiments
 for class groups
 with their physics teacher
- Focus on measurements in the lab and working out at home
- 2 teachers with certificate present at each session

- 1. Nuclear Physics in secondary school
- 2. STUUR-project at KU Leuven
- 3. Actual organization
- 4. Special attention to safety
- 5. The experiments
- 6. Results
- 7. Conclusion

- 3 different experiments on one table,
- 3 groups of 2 students are working together.

a C O a S

Distance

5 - 6

Identification

EXP 13

Distance

EXP 8

Absorption

EXP 5

Sr-90

Co-60

Co-60

Wilson chamber -

EXP 9 Ra-226

Absorption

13 - 14

Identification

EXP 13

/Am-241

Absorption

EXP 22

Am-241

Beta-energy

EXP 7

Sr-90

→ Wilson chamber

EXP 9

Ra-226

In between times

- Experiment 9: tracks of α-rays in Wilson chamber.
- Working out of measurement results

Worksheets available

Worksheets available

- a worksheet for each student
- with comprehensive, complete information
- strict instructions
- problem solving questions
 - on measuring strategy
 - number of measurements
 - measuring intervals
- solutions are given to the physics teacher

Worksheets available

- We are much indebted to J. Kortland of the European Science Education Research Association (ESERA) for his kind and valuable support on our project.
- www.fisme.uu.nl/isp
- Bibliography: Eijkelhof H.M.C. (1996) 'Radiation risk and science education.'

- 1. Nuclear Physics in secondary school
- 2. STUUR-project at KU Leuven
- 3. Actual organization
- 4. Special attention to safety
- 5. The experiments
- 6. Results
- 7. Conclusion

Safety in the lab:

practical directives for manipulation of devices

Geiger-Müller counter (GM-counter)

counts the number of pulses / (= intensity)

21

start/stop.

- o reset
- o time interval
 - (pulses/10 s)
 - (p/10 s) automatic

Counter tube

- o membrane is very vulnerable
- be careful with sharp objects
- protect with cover when ready

Safety in the lab:

practical directives for manipulation of sources

alignment of counter tube and source

spacing element of 1 cm

sources

o in container

- o take source just before measurement
- be careful with sharp objects
- put source in container immediately after measurement

sources

- limit contact time
- keep distance
- use shielding

according to the ALARA-principle

As Low As Reasonably Achievable

- 1. Nuclear Physics in secondary school
- 2. STUUR-project at KU Leuven
- 3. Actual organization
- 4. Special attention to safety
- 5. The experiments
- 6. Results
- 7. Conclusion

Identification

of radiation type(s) in a source by means of absorption sheets

alfa particle 2 neutrons and 2 protons

completely stopped by a thin paper foil

completely stopped by 4 mm aluminium

gamma-radiation = EM waves = photons

Half-value thickness depending on the energy

Protection from radiation:

influence of distance rreversed square law $I \sim \frac{1}{r^2}$

reversed square law $I \sim \frac{1}{r^2}$

Protection by shielding: absorption of β^- radiation

limited penetration depth in materials definition of range R of β -particles and universal range

absorption: the range R of β -particles

Protection by shielding: absorption of γ -radiation

absorption coefficient μ half-value thickness $d_{1/2} = \frac{\ln 2}{\mu}$

absorption: attenuation of γ-rays in lead or in aluminium.

β-energy:

bending of a beam of charged particles in a magnetic field

different behavior of β^+ and β^-

β-energy by bending in a magnetic field

β-energy determined in a magnetic field

- 1. Nuclear Physics in secondary school
- 2. STUUR-project at KU Leuven
- 3. Actual organization
- 4. Special attention to safety
- 5. The experiments
- 6. Results
- 7. Conclusion

Identification

of radiation type(s) in a source by means of absorption sheets

Background radiation values

/b (p/10s)

Intensities behind chosen absorption sheets

Sr-90	air	thin paper foil	paper sheet	1 mm Al	4 mm Al	4 mm Pb	radiation type(s)
/ (p/10s)	4819	4822	4585	1342	11	5	
/ (p/10s)	4769	4799	4488	1312	8	9	
/ (p/10s)	4779	4808	4418	1295	15	5	
I _{av} (p/10s)	4789	4810	4497	1316	11	6	β-

Background radiation values

I _b (p/10s)	8	2	4	I _{b,average} (p/10s)	5
------------------------	---	---	---	--------------------------------	---

Intensities behind chosen absorption sheets

Na-22	air	thin paper foil	paper sheet	1 mm Al	4 mm Al	4 mm Pb	radiation type(s)
/ (p/10s)	3418	3303	2121	223	200	174	
/ (p/10s)	3459	3295	2157	216	196	189	
/ (p/10s)	3422	3336	2147	210	203	184	
<i>I_{αν}</i> (p/10s)	3433	3311	2142	216	200	182	β+, γ

Background radiation values

$ I_{\parallel}$	_b (p/10s)	8	2	4	I _{b,average} (p/10s)	5	
-------------------	----------------------	---	---	---	--------------------------------	---	--

Intensities behind chosen absorption sheets

Am-241	air	thin paper foil	paper sheet	1 mm Al	4 mm Al	4 mm Pb	radiation type(s)
/ (p/10s)	3924	111	80	56	33	5	
/ (p/10s)	4528	107	109	54	30	1	
/ (p/10s)	4370	108	87	54	28	4	
/ _{av} (p/10s)	4274	109	92	55	30	3	α, γ

46

- 1. Nuclear Physics in secondary school
- 2. STUUR-project at KU Leuven
- 3. Actual organization
- 4. Special attention to safety
- 5. The experiments
- 6. Results
- 7. Conclusion

By performing experiments students realize different goals

- recognition of key features in ionizing radiation:
 - stochastic behavior of ionizing radiation
 - multiple radiation of one source
 - protection by distance
 - protection by absorbers
 - attenuation of γ-rays depending on halfvalue thickness of materials

By performing experiments students realize different goals

- they learn about ionizing radiation
 - by means of quantitative comparison of radiation intensities
 - produced by closed sources
 - without contamination risks
 - in support of the curriculum
- their understanding is reinforced by practice

By performing experiments students train different skills

- the use of new devices
- accuracy of measurements
- correction for background radiation
- the need to repeat experiments
- average of repeated measurement results
- relations between measured quantities
- the use of a logarithmic scale

goals we hope to achieve in this project:

- recognition of key features on ionizing radiation
- a better understanding by practice
- dealing on concepts of ionizing radiation
- a better understanding of communication in media
 - to participate in debate
 - to reflect on dangers of radiation
 - to estimate its usefulness in applications

Results (extra)

Distance

in Sr-90

in Co-60

in Na-22

Absorption

Gamma radiation of Co-60 in lead

Beta-minus particles of Sr-90 in different materials:

Aluminium

Plexiglas

Paper sheet

Experiment 8 Radiation intensity and distance

Choose the place to start the distance measurements where the radiation intensity of the source is about 3 times larger than the background radiation. Enter a dozen measurements, each time at a shorter distance from the source in order to cover the whole area between

the counter and the source, but not shorter than 4,0 cm!

Record **the measured distance plus 5 mm** in the table. That's because the radioactive material is placed 4 mm deep in the source and the window of the counter tube is situated 1 mm deeper than the edge of the tube.

Record three times the radiation intensity I_1 , I_2 en I_3 (in pulses per 10 s) at each chosen distance r between the source and the counter tube. The sum of these three measurements gives the intensity I (in pulses per 30 s).

for Sr-90

for Sr-90

for Co-60

for Co-60

Results for Na-22

for Na-22

Experiment 12 Absorption of γ-radiation produced by Co-60 in lead

Measure the **thickness** d of lead sheets of increasing thickness. Measure three times the **intensity** I_d of the pass through radiation (in p/10 s) and calculate the **average intensity** I_{av} . Correct for the **background radiation**. Make a graph of the natural logarithm of the I_{cor} intensity as a function of the thickness d of the absorption sheets. Draw a line through the measuring points average and determine the slope of that line. This is the **absorption coefficient** μ of γ -radiation of lead for Co-60. Calculate the **half-value thickness** $d_{1/2}$ of lead for Co-60. The half-thickness and absorption coefficient are inversely proportional.

Results

The absorption coefficient of lead is μ = 0,60 cm⁻¹ and the half-value thickness is $d_{1/2} = \frac{\ln 2}{\mu} = 1,2$ cm for

the y-radiation of cobalt-60

Experiment 5 Absorption of β -particles in materials

The setup consists of a Geiger-Müller counter-tube with pulse counter. The counter-tube is on a

straight line towards the **strontium-90** source, on a fixed distance *r*. Absorption sheets of different thicknesses *d* are clamped in a holder between the source and the tube.

Make a graph of the natural logarithm of the intensity I_d as a function of the thickness d of the absorption sheets for three different materials (aluminium, Plexiglas and paper).

Does the linear course of the graphs be confirmed? Draw a line through the measuring points average and determine the slope of each line. Determine the values of the corresponding absorption coefficients.

Calculate for the three materials a value for the range R. The product of R and the density ρ is the universal range R_u for the β -rays produced in a strontium-90 source.

Results for a strontium-90 source 4 mm aluminium stops beta radiation in Sr-90

Range R depends on density ρ	aluminium	plexiglas	paper	average
<i>R</i> (cm)	0,38	0,86	1,7	/
$R_u = R \cdot ho$ (g/cm²)	1,0	1,0	1,1	1,0

Deduction for other materials enquiry learning element or class-discussion

	human tissue or water	glass	MDF-wood	hardboard
Density (g/cm³)	1,00	2,55 g/cm ³	0,78 g/cm ³	1,34 g/cm ³
$R=rac{R_u}{ ho}$ (cm)	1,0	0,41	1,3	0,72

