Corrosion of spent MOX fuels under repository-relevant conditions

<u>Giuseppe Modolo¹</u>^{*}, Guido Deissmann¹, Gregory Leinders², Thierry Mennecart³, Christelle Cachoir³, Karel Lemmens³, Marc Verwerft², Dirk Bosbach¹

¹Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), Jülich, Germany *g.modolo@fz-juelich.de

²Institute for Nuclear Materials Science, Belgian Nuclear Research Centre (SCK•CEN),Boeretang 200, B-2400 Mol, Belgium ³Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium

Spent fuel workshop, Ghent, Belgium, November 14-15 2019

Mitglied der Helmholtz-Gemeinschaft

Nuclear Energy – the German perspective

terminated by 2022 – the decommissioning of all NPP will take several decades.

Non-heat generating waste, until 2080 (304 000 m³)

Repository Konrad for Germany's low- and intermediate level waste will start operation in the next decade.

Heat-generating waste, HLW (28100 m³)

The German repository site selection act (2017) has restarted the process for the selection of a site for Germany's high-level waste repository (target date 2031).

Rock salt

salt

Crystalline

Clay rock

Spent nuclear fuel (until 2022):	17,220 t _{HM}
reprocessed	6,670 t _{HM}
LWR-fuel for direct disposal (ca.10% MOX)	10,550 t _{HM}
HLW-glass (CSD-V)	670 m³
MAW-glass (CSD-B)	25 m ³
compacted waste (CSD-C)	740 m ³
other wastes (e.g. HTRSF, RRSF)	5,710 m ³

MOX research in Europe

MOX form	Burn-up	REDOX	Solution	Focus of the studies	Ref.
UO ₂ –4.92 wt% PuO ₂ , cladded/decladded fuel fragnents	44.4 GWd/t _{HM}	Reducing, 1–30 mM H ₂ , RT, 2100 days	NaCl/2mM NaHCO ₃	Corrosion studies in autoclaves,	Carbol et al. <i>JNM</i> 2009
UO_2 –6.6 wt% PuO ₂ , decladded SF fragnents	48.8 GWd/t _{HM}	Oxidizing, +207 mV at RT, up to 3 month	DI aerated water, DI aerated water + an external γ-irradiation	Solution chemistry (water radiolysis) and surface characterization	Jégou et al. <i>JNM</i> 2010
MOX	63 GWd/t _{HM} 30 kW/m	Oxidizing	Air-saturated buffer solutions, pH 8.5	Leaching experiments (IFR) and correlations with fission gas release (IFR)	Johnson et al. JNM 2012
UO_2 –6.6 wt% PuO ₂ , Segments of SF	48.8 GWd/t _{HM}	Oxidizing, +207 mV at RT, 223 + 605 days	DI aerated water/ + external γ-irradiation pH 5.5	Solution chemistry (water radiolysis) and surface characterization	Magnin et al . <i>JNM</i> 2015
MOX MIMAS pellets - 7.48 wt.% PuO ₂	Not irradiated	Oxic (air) + anoxic (Ar) glovebox	Bicarbonate water (NaHCO ₃ 10 ⁻² M	Solution chemistry (influence of alpha) and surface characterization	Odorowski et al. JNM 2016
MOX	38 GWd/t _{HM}	Reducing	Bicarbonate water	EU- Disco Project	KIT-INE
MOX	54 GWd/t _{HM}	Anoxic: Ar	Bicarbonate water	EU- Disco Project	JRC
MOX	Unirradiadet/+ Pu-238 doped	Anoxic: Ar	Simplified COx water	EU- Disco Project	CEA

MOX research in Europe

What are the main issues?

- In-reactor MOX fuel behavior is similar to that of UO₂!
- Can the knowledge acquired for SNF-UOx be transferred to SNF-MOX (Disposal)?
- Understanding RN release: Instant release fraction (IRF) & Long-term matrix corrosion
 - Effect of SNF history (burn up, linear power rating)
- What is the role of the Pu-rich agglomerates in spent MOX fuel?
- Most studies on MOX were carried out at oxidizing/anoxic conditions!
 - Less relevant for final disposal (reducing)

Corrosion of spent MOX fuel within the SF-ALE project

Objective: study the influence of groundwater chemistry inside waste package on spent fuel degradation and leaching

- 3 leaching experiments are carried out with well characterized MOX (Influence of BU)
- Influence of leaching solution under reducing conditions @ RT
- IRF and matrix corrosion
- Sampling gas and solution (>30 relevant RN)

Corrosion of spent MOX fuel within SF-ALE : Timeline

JÜLICH Forschungszentrum

- MOX: 14.3% Pu/(U+Pu)
- Irradiated in BR-3 (1986-1987, 255-270 W/cm) and in BR-2 (1997-2011, 300-325 W/cm)
- Cladded samples: 2 * BU ~ 48 GWd/t_{HM} and 1 * 26 GWd/t_{HM}
- Representative samples for basic characterization (for DIS3: CT6, BU3)

OM: macro image

cladding hydrides

cladding waterside oxide

fuel-side corrosion

SEM: Pu-rich island small

small particles at mid-rad

10µm SCK*CEN 12/5/2017 x800 20.0kV LED SEM WD 14.7mm 11:09:15

cladding waterside oxide

fuel-side

EPMA: radial maps and profiles for Pu/fission products

fuel center Periphery (rim) ¹⁄₄ radius 1/2 radius ³⁄₄ radius Pu Xe Cs JÜLICH Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

page 10

EPMA: radial maps and profiles for Pu/fission products

fuel center Periphery (rim) 1/4 radius 1/2 radius ³⁄₄ radius Pu Nd Мо JÜLICH Mitglied der Helmholtz-Gemeinschaft page 11 Forschungszentrum

EPMA line scans: Averaged radial composition for U, Pu, and O

EPMA line scans: Averaged radial composition for Nd, Zr, Mo, and Te

Loading of the autoclaves and start leaching

MIMAS MOX with Zircaloy-4 cladding

2.4 cm

250 mL Ti-lined stainless VA steel autoclaves

Autoclave:7Sample ID:F6677Fuel type:MOXBurn-up:47.6 GDissolution liquid:YCW,Dissolution gas:Ar / 4%

7 F6677-DIS1 MOX 47.6 GWd/t_{HM} YCW, pH=13.5¹⁾ Ar / 4% H₂, 40 bar 8 F6677-DIS2 MOX 47.9 GWd/t_{HM} BC, pH=7.4²⁾ Ar / 4% H₂, 40 bar 9 F6677-DIS3 MOX 25.8 GWd/t_{HM} BC, pH=7.4²⁾ Ar / 4% H₂, 40 bar

¹⁾Young Cement Water with Calcium – light composition ²⁾Bicarbonate solution type "First-Nuclides" Mitglied der Helmholtz-Gemeinschaft

Timeline: Leaching experiments

- 1. +5 days (renewal of leaching medium)
- 2. +21 days
- 3. +82 days = 2 months + 21 days
- 4. +271 days \approx 9 months
- 5. +544 days ≈ 1.5 years

- -> IRF solution√
 -> IRF solution√
 -> IRF + matrix solution√
 -> matrix
 -> matrix
- gas ✓ gas ✓ gas ✓ gas ✓

Radiochemical analysis matrix

Method	Elements to be analyzed
Alpha spectrometry	Cm-242, Cm-244, Pu-238 + Am-241, Pu-239 + Pu-240
Gamma spectrometry	Cs-134, Cs-137, Co-60, Mn-54, Ce-144, Am-241, Nb-94
Liquid scintillation counting	C-14, Sr-90, Cl-36, Ni-63, Ni-59
TIMS	U-233, U-234, U-235, U-236, U-238, Pu-239, Pu-240, Pu-241, Pu-242, Pu-244
ICP-MS	Be-10, Tc-99, Pd-105, Pd-106, Pd-108, Zr-90, Zr-91, Zr-94, Mo-95, Mo-96, Mo-97, Mo-98, Ru-100, Ru-101, Ru-102, Ru-104, Cd-111, Cd-112, Cd-114, Nb-93, Rh-103, Ag-107, Ag-109, Sn-118, Sn-120, Te-126, Cs-133, I-129
Gas mass spectrometry	H ₂ , N ₂ , O ₂ , Ar, Kr-83, Kr-84, Kr-85, Kr-86, Xe-131, Xe-132, Xe-134, Xe-136

Results gas sampling: Xe, Kr

- Continous release (as for UOx)
- Xe/Kr ≈ 22

(for Pu-239: Xe/Kr:18.6, Pu-241: Xe/Kr: 23.2) *White et al. JNM 288, 2010*

YCWCa: Young Cement Water with Calcium – light composition Bicar: Bicarbonate solution type "First-Nuclides"

Mitglied der Helmholtz-Gemeinschaft

Results leaching experiments: U, Pu

- High initial release of U (as for UOx)
- Pu concentrations below the DL (<10⁻⁹M)

YCWCa: Young Cement Water with Calcium – light composition Bicar: Bicarbonate solution type "First-Nuclides"

Results leaching experiments: Cs, I

YCWCa: Young Cement Water with Calcium – light composition Bicar: Bicarbonate solution type "First-Nuclides"

Results leaching experiments: Tc, Sr

YCWCa: Young Cement Water with Calcium – light composition Bicar: Bicarbonate solution type "First-Nuclides"

Conclusion and Outlook

- Dissolution experiment with fully characterized MOX fuel successfully started
- 3 MOX experiments running in parallel under specific conditions
- Continuous release of fission gases (Xe, Kr) (cf. results of UOx)
- Results from puncturing and inventory (RCA, calculations) pending:
 - important for FIAP (FG) and FIAP (IRF/Matrix)
- Continuous experiment (1.5 years)
- Post leaching characterization planned
 - > Raman, SEM etc. for secondary phases and microstructure evolution

ACKNOWLEDGEMENTS

Thanks to ... Gerry Cools, Guy Cornelis, Ben Gielen, Pieter Schroeders, Janne Pakarinen, Felix Brandt...

Thank you for your kind attention!

