

Release of radionuclides from spent nuclear fuel under anoxic / reducing conditions in highly alkaline solution

M. Herm, E. González-Robles, N. Müller, A. Walschburger, M. Böttle, M. Fuss, E. Bohnert, R. Gaggiano, V. Metz

Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, P.O. Box 3640, 76021 Karlsruhe, Germany

Karlsruhe Institute of Technology - Institute for Nuclear Waste Disposal (KIT-INE)

Background

- Deep underground repository for management of spent nuclear fuel (SNF) considered in many countries.
- Water access, consecutive failure of canister and loss of cladding integrity considered in long-term safety analysis.
- Assessing performance of SNF in geological disposal system requires:
 - Mechanistic understanding.
 - Quantification of radionuclides release from SNF under reducing conditions.

Belgian supercontainer concept:

- Concept for high-level radioactive waste.
- Multi-barrier concept.
- Provide favourable chemical environment to delay overpack degradation (high pH).

Objectives

- Matrix dissolution of UO₂ spent nuclear fuel and instant release fraction (IRF) studied under anoxic/reducing and hyper alkaline conditions.
- Leaching experiments with periodical sampling of gaseous and aqueous phase.
- Three experiments under following conditions:
 - 40 bar of H₂/Ar gas mixture $\rightarrow p(H_2) = 3.2 \text{ bar} + p(Ar) = 36.8 \text{ bar}$.
 - 3.75 bar of H_2/Ar gas mixture $\rightarrow p(H_2) = 0.3$ bar + p(Ar) = 3.45 bar.
 - 1 bar of Ar gas $\rightarrow p(H_2) = 0$ bar + p(Ar) = 1 bar.

Materials: UO₂ fuel rod segment

Fuel rod segment irradiated in the PWR Gösgen (Switzerland):

- Fuel type: UO₂ with initial enrichment of ²³⁵U: 3.8%.
- Cycles: 4.
- Effective full power: 1226 days.
- Average linear power: 260 W·cm⁻¹
- Average burn-up of: 50.4 MWd-(kgU)⁻¹
- Cooling time: 28 years.

Experimental: cutting of specimens

- Cut from mid to mid pellet positions (20 mm length samples).
 - → one complete pellet plus two half pellets (two inter-pellet gaps).

- Three SNF samples with Zircaloy cladding cut from the fuel rod segment:
 - in hot cell under N₂ atmosphere (with an O₂ content < 1%).</p>
 - slow dry cutting to limit heating (friction between blade and pellet).
- Cut samples stored in Ar atmosphere (prevent oxidation of surfaces).

Experimental: design of leaching experiments

- Young Cement Water with Ca (YCWCa) prepared according to SCK-CEN. → except reduction of [Ca] from 7.0×10⁻⁴ M to 4.8×10⁻⁴ M.
- pH 13.5.
- Washing step and seven samplings.

YCWCa	[Na]	[K]	[Ca]	[AI]	[Si]
Theoretical (M)	1.4×10 ⁻¹	3.7×10 ⁻¹	4.8×10 ⁻⁴	6.1×10 ⁻⁴	3.0×10 ⁻⁴
Experimental (M)	1.35×10 ⁻¹	3.41×10 ⁻¹	3.84×10 ⁻⁴	b.d.l*	b.d.l*

*b.d.l: below detection limit

sample #	Interval (days)	Total time (days)
1	1	1
2	20	21
3	60	81
4	90	171
5	120	291
6	180	471
7	240	711

Experimental: design of leaching experiments

- Autoclaves: Ti-lined (total volume of 250 mL) with 2 valves in the lid to allow sampling of gases and liquids.
- Initial volume of solution: 220 mL in autoclave.
- Complete replenishment after one day (washing step).
- Start of experiments: Feb./Mar. 2017 // End of experiments: April 2019.

Experimental: liquid sampling

- 10 mL aliquots are taken in static regime.
- Autoclave purged with Ar during sampling.
- Non-filtered and ultra filtered (10 kD, 2-3 nm) samples.
- Dilution and Cs-removal (ammoniummolybdatophosphate, AMP) necessary.

Experimental: gas sampling

Karlsruhe Institute of Technology

- Autoclave connected to vacuum pump.
- Sampling cylinder placed outside the hot cell.
- Connections purged with Ar.
- Overpressure reduction to 1 bar in autoclave.
- Opening the valve of the autoclave and, at the same time, the valve of the sampling cylinder.
- Gas sample released from the autoclave to the sampling cylinder within two minutes.
- Gas phase is renewed after each sampling (pseudo-dynamic regime).

Experimental: measurement of RN

- **a-spectroscopy:** 238,239,240,242 Pu and further α -emitters.
- γ-spectroscopy: ¹⁴⁴Ce, ^{154,155}Eu, ²⁴¹Am, ^{134,137}Cs, ⁶⁰Co, ¹²⁹I.
- **LSC:** ²⁴¹Pu, ⁹⁰Sr.
- HR-ICP-MS: ⁹⁹Tc, ^{235,238}U, ²³⁷Np, ^{239,240,241,242}Pu, ^{241,243}Am, ²⁴⁴Cm.
- gas-MS: fission gases Kr, Xe, H₂, Ar, radiolytic O₂ and also intrusion of air checked (N₂).

Results: SNF inventory calculation

- KORIGEN code.
- Cooling time: 28 years.
- Inventory of Kr, Xe and Kr+Xe was calculated taking into account the inventory released into the plenum.

	mol/g _{UO2}
Kr	4.6E-06
Xe	4.8E-05
Kr + Xe	5.2E-05
Sr-90	3.8E-06
Cs-137	6.2E-06
U-238	3.4E-03
Np-237	2.8E-06
Pu-239	2.1E-05
Am-243	8.4E-07
Cm-244	1.2E-07

Results: moles released of fission gases

- Kr below detection limit in wash cycle of all experiments.
- Fission gas release decreasing after about 200 days of leaching.

Results: cumulative release fraction of FG

Fission gases release (cumulative) in % after 500 days of leaching:

	40 bar Ar/H ₂	3.75 bar Ar/H ₂	1 bar Ar
Kr (%)	24.9 ± 6.2	9.9 ± 0.6	12.8 ± 1.0
Xe (%)	18.4 ± 2.8	9.4 ± 0.5	12.2 ± 0.9
Kr + Xe (%)	18.9 ± 2.7	9.4 ± 0.5	12.3 ± 0.9

Results: concentration of 90Sr & 137Cs in solution

- ¹³⁷Cs and ⁹⁰Sr concentrations similar in the three experiments at same time step.
- Concentration of 90Sr and 137Cs after 780 days of leaching still increasing.

Results: moles released of 90Sr & 137Cs

- The mole released in solution follow the same trend as the measured concentrations.
- After 780 days of experiment there are still moles of ⁹⁰Sr and ¹³⁷Cs released into the solution.

Results: release fraction of 90Sr and 137Cs

Release fraction in % for wash step and last sampling:

	40 bar Ar/H ₂	3.75 bar Ar/H ₂	1 bar Ar
⁹⁰ Sr (%)	7×10 ⁻⁵ / 2×10 ⁻⁴	8×10 ⁻⁵ / 3×10 ⁻⁴	9×10 ⁻⁵ / 2×10 ⁻⁴
¹³⁷ Cs (%)	1.1 / 3.3	0.9 / 2.7	0.1 / 2.6

Results: concentration of actinides in solution

- [U] constant between 10⁻⁸ and 10⁻⁷ M in all experiments and [An] in pure Ar experiment seem constant.
- ²³⁷Np, ²³⁹Pu and ²⁴³Am reach concentration plateau between 10⁻¹⁰ and 10⁻⁸ M after 100 days of leaching in 40 bar Ar/H₂ experiment.
- [An] in 0.3 bar H₂ + 3.45 bar Ar experiments seem to increase.

Conclusions and outlook

- The IRF of fission gases, 90Sr and 137Cs has been determined over 500 days of leaching.
- There is still a release of fission gases, 90Sr and 137Cs in the 3 experiments as indicated by the mole and fraction released into the solution and into the gas phase.
- Concentration of actinides in all experiments significantly lower than in experiments performed under oxic conditions.
- Actinides concentrations constant in pure Ar experiment.
- Indications for similar behavior in 40 bar Ar/H₂ experiment.
- Increase of actinide concentrations in 3.75 bar Ar/H₂ experiment.

Acknowledgements

- F. Geyer (KIT)
- T. Kisely (KIT)
- C. Walschburger (KIT)

Thank you for your attention!