

Uranium Carbide, a Potential Nuclear Fuel

Supervisors: Prof. Mats Jonsson (KTH University) and Prof. Mats Johnsson (Stockholm University)

Purpose:

- Establish a knowledge base for the behavior some Gen-IV fuel candidates in aqueous systems
- Understand the release of radionuclides upon accidents and in geological repositories for used nuclear fuel
- The fuel types of main interest :uranium carbides and uranium nitrides:

Compared to standard UO₂ based fuels Uranium Carbide UC has :

- better thermal conductivity
- higher fissile material density

Aim

- Elucidate the mechanisms and kinetics of dissolution of the fuel matrixes (UC and UN) in water:
 - dissolution under oxic and anoxic conditions
 - radiation-induced dissolution
 - impact of fission products and solutes in the water
 - → To understand the stability of new fuels in aqueous systems

Starting point:

- · synthesis of uranium carbides and uranium nitrides
- manufacturing of pellets
- doping pellets with non-radioactive isotopes of fission products as models for irradiated nuclear fuel

Synthesis of UC

Mixing precursors UO₂:C

Carbo-thermal reduction at 1500C under 5%H₂ in N₂

Characterization of the crushed pellet with X-Ray Powder diffraction (XRD)

Preparing dense pellets by Spark Plasma Sintering

Stability of UC

- Dissolution of UC pellets should be studied experimentally under:
 - H₂O₂ exposure
 - GAMMA irradiation

2019-11-18 6

Model Carbides

- Preliminary studies are based on other carbides such as Titanium Carbide(TiC) to get insights on
 - the manufacturing of these carbides
 - understand the behavior of carbides under oxidative dissolution conditions
- Reactivity of Tungsten carbide is also studied for comparison

Synthesis of TiC

Preparing dense pellets by Spark Plasma
Sintering

XRD-Diffractogram

Reactivity of TiC in the presence of H₂O₂

- The Ghormley triiodide method :measure H₂O₂concentration.
 - The absorbance of I₃⁻ is subsequently measured spectrophotometrically at 350 nm.
 - A linear correlation between the absorbance and the H₂O₂ concentration was obtained by a calibration curve to calculate [H₂O₂]
- H₂O₂ decomposition was studied for different amount of of TiC powder (50mg, 0,25g 0,5g and 0,75g) in a 25 ml volume of H₂O₂

Reactivity of TiC in the presence of H₂O₂

50mg TiC in 25ml H_2O 0,26mM H_2O_2

first order rate constant

Reactivity of TiC in the presence of H₂O₂

second order rate constant

comparing first order rate constant 50mg TiC

Reactivity of WC in the presence of H₂O₂

Reactivity of WC in the presence of H₂O₂

second order rate constant

Conclusion

- Carbothermal reduction is an effective process in producing carbides
- TiC and WC are reactive once exposed to H₂O₂
- Carbides seems to be more reactive than the oxides

Acknowledgments

 The Swedish Research Council is gratefully acknowledged for financial support