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• Purpose:

– Establish a knowledge base for the behavior some Gen-IV fuel candidates 
in aqueous systems

– Understand the release  of radionuclides upon accidents and in geological  
repositories for used nuclear fuel

• The fuel types of main interest :uranium carbides and uranium 
nitrides:
Compared to standard UO2 based fuels Uranium Carbide UC has 
:

– better thermal conductivity 

– higher fissile material density



Aim
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• Elucidate the mechanisms and kinetics of dissolution of the fuel 
matrixes (UC and UN) in water :

– dissolution under oxic and anoxic conditions

– radiation-induced dissolution

– impact of fission products and solutes in the water

To understand the stability of new fuels in aqueous systems
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Starting point: 

• synthesis of uranium carbides and uranium nitrides  

• manufacturing of pellets

• doping pellets with non-radioactive isotopes of fission products as 
models for irradiated nuclear fuel



Synthesis of UC
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Preparing dense pellets by Spark Plasma Sintering 

Characterization of the crushed pellet with X-Ray  Powder diffraction 
(XRD)

Carbo-thermal reduction at 1500C under 5%H2 in N2

Pressing mixed powder into green pellets

Mixing precursors  UO2:C 



Stability of UC
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• Dissolution of UC pellets should be studied experimentally under:

– H2O2 exposure 

– GAMMA irradiation



Model Carbides
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• Preliminary studies are based on other carbides such as Titanium 
Carbide(TiC) to get insights on 

– the manufacturing of these carbides

– understand the behavior of carbides under oxidative dissolution conditions

• Reactivity of Tungsten carbide is also studied for comparison



Synthesis of TiC

2019-11-18 8

Preparing dense pellets by Spark Plasma 
Sintering 

Characterization of the crushed pellet with X-
Ray  Powder diffraction (XRD)

Carbo-thermal reduction for 16h at 1500C 
under 5%H2 in N2

Pressing mixed powder into green pellets

Drying  at 80C

Mixing precursors  TiO2:C (1:3,3)
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XRD-Diffractogram
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TiO2
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Reactivity of TiC in the presence of H2O2
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• The Ghormley triiodide method :measure H2O2concentration. 

– The absorbance of I3
− is subsequently measured spectrophotometrically

at 350 nm.

– A linear correlation between the absorbance and the H2O2 concentration 
was obtained by a calibration curve to calculate [H2O2]

• H2O2 decomposition was studied for different amount of  of TiC
powder (50mg, 0,25g 0,5g and 0,75g ) in a 25 ml volume of H2O.



Reactivity of TiC in the presence of H2O2
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Reactivity of TiC in the presence of H2O2
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Reactivity of WC in the presence of H2O2
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Reactivity of WC in the presence of H2O2

2019-11-18 15

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 1000 2000 3000 4000 5000 6000 7000

K
1
(S

-1
)

SA/V (m-1)

second order rate constant 



Conclusion
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• Carbothermal reduction is an effective process in producing 
carbides 

• TiC and WC are reactive once exposed to H2O2

• Carbides seems to be more reactive than the oxides 
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